Amorphous Mesoporous Titania with High Surface Area for High-Capacity Lithium Storage
نویسندگان
چکیده
منابع مشابه
Mesoporous crystalline-amorphous oxide nanocomposite network for high-performance lithium storage.
Mesoporous nanocomposites composed of crystalline and amorphous oxides network were successfully synthesized by a continuous aerosol spray process; electrodes made from such nanocomposites with a thin-layer of protective oxide coating exhibit high capacity and long cycling life for lithium storage.
متن کاملCorrection: High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage.
Correction for 'High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage' by Hsin-Yi Wang et al., Nanoscale, 2014, 6, 14926-14931.
متن کاملHigh-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage.
Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m(2) g(-1) were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and a...
متن کاملAdvanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.
Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker age...
متن کاملAmorphous mesoporous GeOx anode for Na-ion batteries with high capacity and long lifespan
It is recently demonstrated that amorphous Ge anode shows higher reversible Na-ion storage capacity (590 mA h g-1) than crystallized Ge anode (369 mA h g-1). Here, amorphous GeO x anode is prepared by a simple wet-chemistry reduction route at room temperature. The obtained amorphous GeO x shows a porous hierarchical architecture, accompanied with a Brunauer-Emmett-Teller surface area of 159 m2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochemistry
سال: 2009
ISSN: 2186-2451,1344-3542
DOI: 10.5796/electrochemistry.77.373